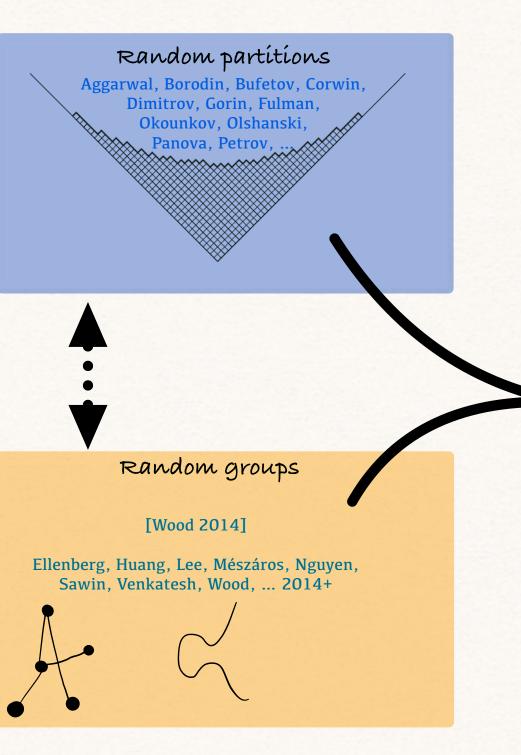
RANDOM MATRICES, RANDOM PARTITIONS, AND RANDOM GROUPS

ROGER VAN PESKI (COLUMBIA UNIVERSITY)

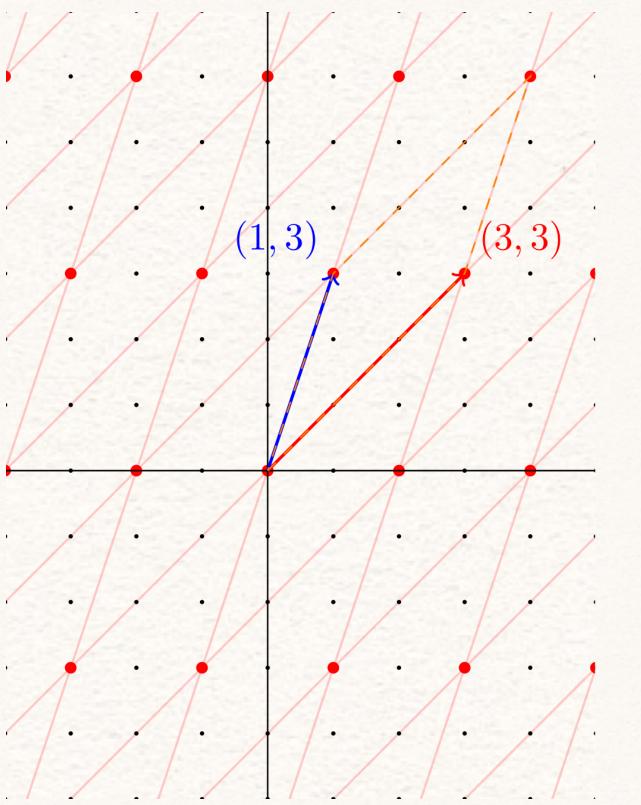
USC DEPARTMENT COLLOQUIUM MARCH 26, 2025



The union of random groups and random partitions, applied to random matrices, benefits all three.

> 'Discrete' random matrices (entries in \mathbb{Z}_{p} , \mathbb{Z})

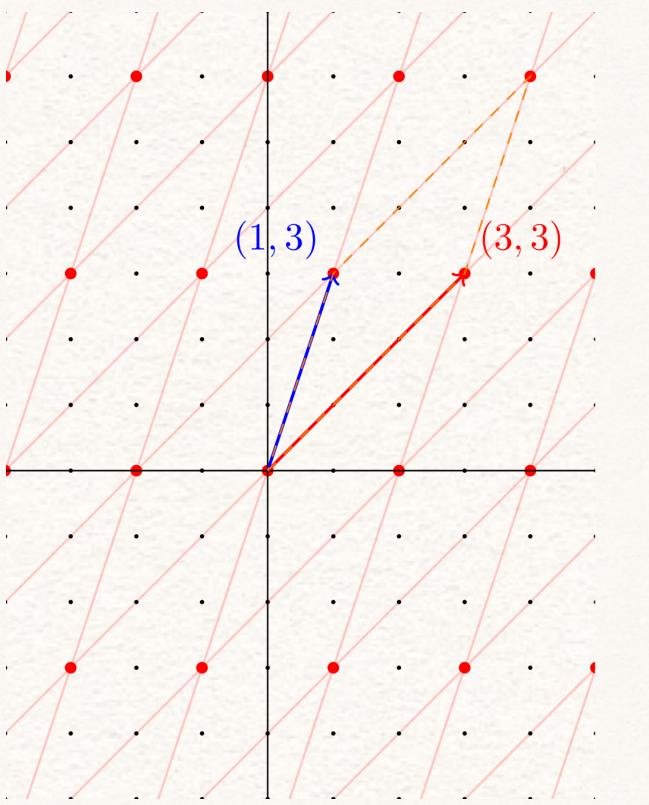
 $\begin{pmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \\ \chi_{31} & \chi_{32} & \chi_{33} \end{pmatrix}$



 $A = \begin{pmatrix} 3 & 1 \\ 3 & 3 \end{pmatrix}$ $A: \mathbb{Z}^2 \to \mathbb{Z}^2$ $Cok(A) := \mathbb{Z}^2/A\mathbb{Z}^2$

 $\cong \mathbb{Z}/6\mathbb{Z}$

#Cok(A)=|det A|



 $A \in Mat_{N}(\mathbb{Z})$

Question: how does cokernel look

• if A is random? • if $A = A_{\tau} \cdots A_{2} A_{1}$, A_{1}, A_{2}, \cdots random?

• if $N \rightarrow \infty$?

unítary.

Singular values of

 $A_{\tau} \cdots A_{2} A_{1}?$

Ergodic theory [Bellman 1954], Furstenberg-Kesten 1960]... Statistical physics [Akemann-Burda-Kieburg, 2010+] Neural networks Q: Which probability measures on abelian p-groups (# $G = p^n$) describe those occurring 'in nature'?

Cohen and Lenstra (1983):
$$\mathbb{P}(G) \propto \frac{1}{\#Aut(G)}$$

(distributions of class groups)

"Our point is that the most naive assumption on the distribution ... leads directly to the Cohen-Lenstra principle that groups should carry a weight inversely proportional to the order of its automorphism group" -Friedman and Washington, 1987

Naíve model random group: <u>cokernel</u> of random matrix

Fix a prime p.

Base p expansions: $(994 (base 10) = 3 + 3.7 + 5.7^2 + 5.7^3)$

$$\mathbb{Z}_{p} = \{ a_{0} + a_{1}p + a_{2}p^{2} + \dots : a_{i} \in \{0, \dots, p^{-1}\} \text{ for } i=1,2,\dots\}$$

Example: $-1 = 6 + 6 \cdot 7 + 6 \cdot 7^2 + \dots \in \mathbb{Z}_7$

An NXN matrix $A \in M_{at_N}(\mathbb{Z}_p)$ gives linear map $A: \mathbb{Z}_p^{n} \to \mathbb{Z}_p^{n}$ with <u>cokernel</u> $Cok(A) := \mathbb{Z}_p^{n} / A \mathbb{Z}_p^{n}$

(Addítive) Haar probability measure on \mathbb{Z}_p : Pick $a_i \in \{0, \dots, p-1\}$ uniformly random, independent.

Let $A \in M_{at_N}(\mathbb{Z}_p)$ have independent Haar entries. Then for any abelian p-group G_i $\lim_{N \to \infty} \mathbb{P}((ok(A) \cong G) = \frac{\prod_{i \ge 1}^{n} - p^{-i}}{\frac{i \ge 1}{2} + Aut(G)}$ [Friedman-Washington 1987]

Let $A \in M_{at_{N}}(\mathbb{Z}_{p})$ have entries sampled independently from any probability distribution which is not constant modulo p. Then for any abelian p-group G, $\lim_{N \to \infty} \mathbb{P}((ok(A) \cong G) = \frac{\prod_{i=1}^{n} p^{-i}}{\#Aut(G)}$ [Wood 2015]

Also holds for <u>integer</u> matrices (different primes become independent).

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Basic progression:

- 1. Probe límít by exact computations with algebraically nice models (e.g. additive Haar matrices)
- 2. Prove universality, same limits shared by different prelimit matrix distributions (moment method)

HOW TO DESCRIBE LIMITS OF A BIG RANDOM GROUP?

Cok(A) converges in distribution as $N \rightarrow \infty$, but

 $Cok(A_{\tau} \cap A_2A_1)$ gets bigger as $\tau \to \infty$ (no convergence).

Can still study e.g. its rank.

HOW TO DESCRIBE LIMITS OF A BIG RANDOM GROUP?

 $\operatorname{Cok}(A)$ converges in distribution as $N \to \infty$, but $\operatorname{Cok}(A_{\tau} \cap A_{\tau}A_{\tau})$ gets bigger as $\tau \to \infty$ (no convergence).

Can still study e.g. its rank.

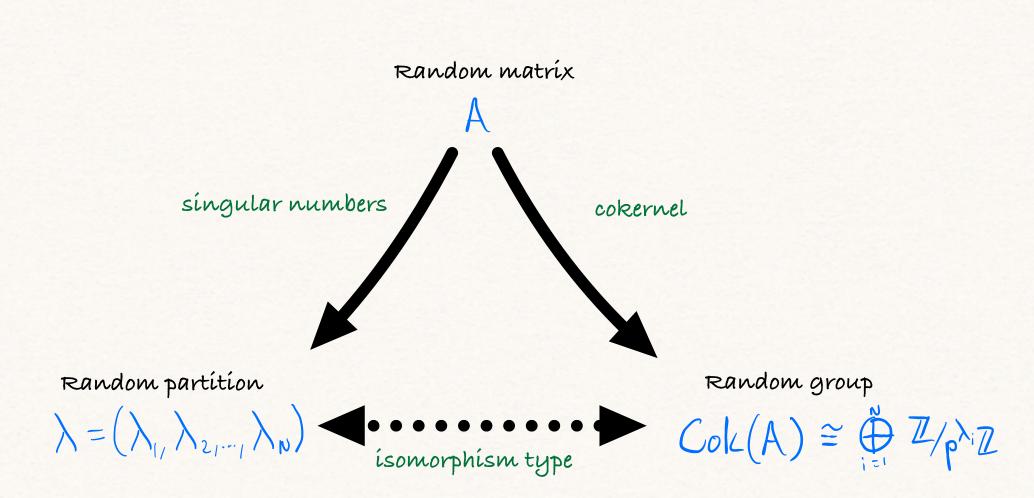
Theorem [VP 2023, special case] For independent N X N Haar matrices, as N, $\tau \to \infty$, rank $(Cok(A_{\tau} \cdots A_{2}A_{1})) - \log(\tau) \stackrel{\times}{\to} \mathcal{L}^{(1)}$ for a new explicit, Z-valued random variable $\mathcal{L}^{(1)}$.

$$\mathbb{P}(\mathcal{L}^{(i)} = \chi) = \frac{1}{\prod_{i \ge i} (1 - p^{-i})} \sum_{j \ge 0} e^{-\chi} p^{j-\chi} \frac{(-1)^{j} p^{-\binom{j}{2}}}{\prod_{i \ge i} (1 - p^{-i})}$$
(2)

$$(x \text{ integer})$$

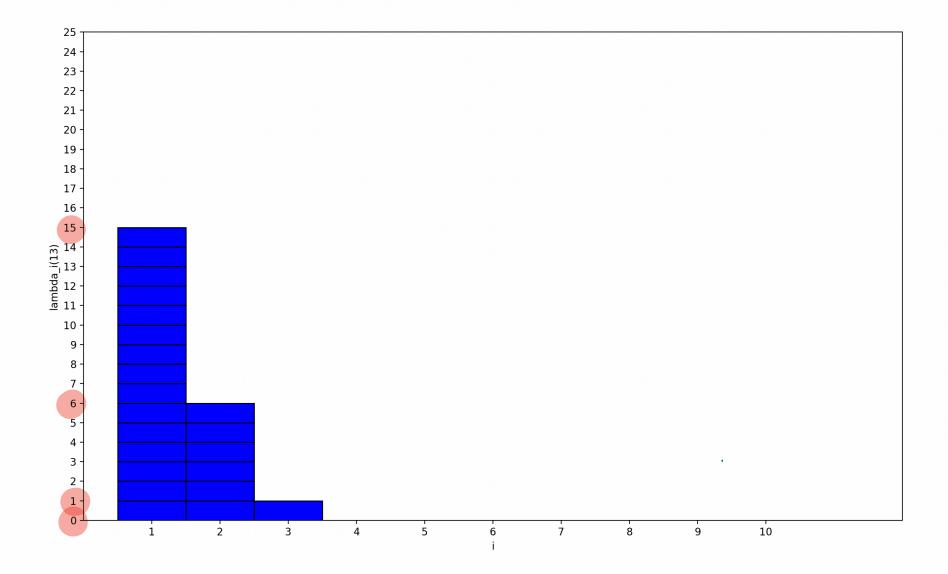
"DISCRETE SINGULAR VALUES"

 $A \in Mat_N(\mathbb{Z}_p)$ has decomposition $U, V \in GL_N(\mathbb{Z}_p)$ $A = \bigcup \operatorname{Diag}(p^{\lambda_{1}}, p^{\lambda_{N}}) V,$ $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_N \geq 0$ "singular numbers" (integer partition)

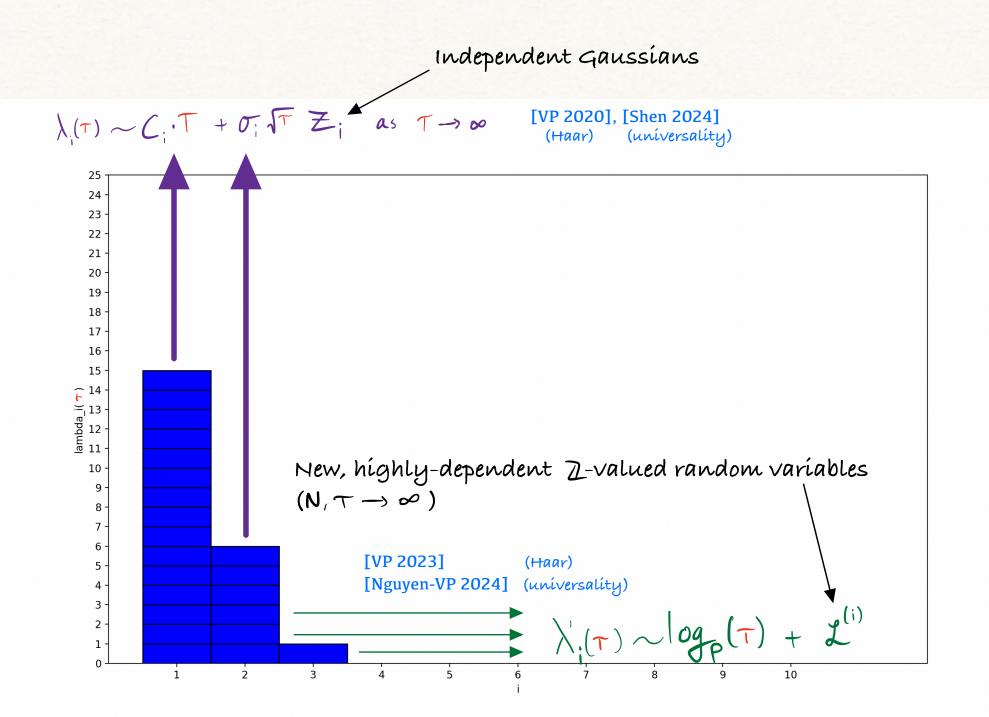


HOW DOES A 'BIG' RANDOM (ABELIAN P-) GROUP LOOK?

(trivial) $\operatorname{Cok}(A_{13} \cdots A_{2}A_{1}) \cong \mathbb{Z}/p^{15}\mathbb{Z} \oplus \mathbb{Z}/p^{6}\mathbb{Z} \oplus \mathbb{Z}/p^{1}\mathbb{Z} \oplus \mathbb{Z}/p^{0}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{0}\mathbb{Z}$



HOW DOES A 'BIG' RANDOM (ABELIAN P-) GROUP LOOK?



Theorem [VP 2020] For independent N X N Haar matrices, as $T \rightarrow \infty$,

$$\frac{\lambda_{i}(\tau) - C_{i}\tau}{\sigma_{i}\sqrt{\tau}} \longrightarrow \mathcal{N}(O_{i})$$

Theorem [VP 2023a] For independent N X N Haar matrices, as N, $\top \rightarrow \infty$,

$$\lambda'_{i}(\tau) - \log(\tau) \xrightarrow{*} \mathcal{I}''$$

in joint distribution.

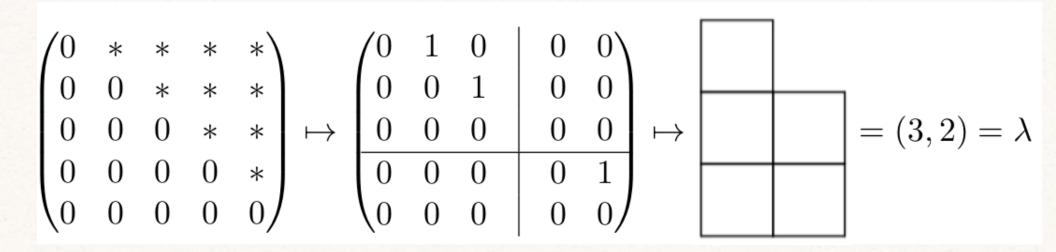
Theorem [VP 2023b] Construct multi-time limit of $\lambda'_{(\tau)} - \log_{(\tau)}(\tau)$ (reflecting Poisson sea), which has $(\mathcal{I}'_{+}\mathcal{I}'_{+})$ as stationary distribution.

Theorem [Nguyen-VP 2024] $\mathcal{L}^{(i)}$ are universal: any matrix distribution (nonconstant mod p) yields same asymptotics. Also holds for integer entries.

WHERE ELSE DOES THIS LIMIT APPEAR?

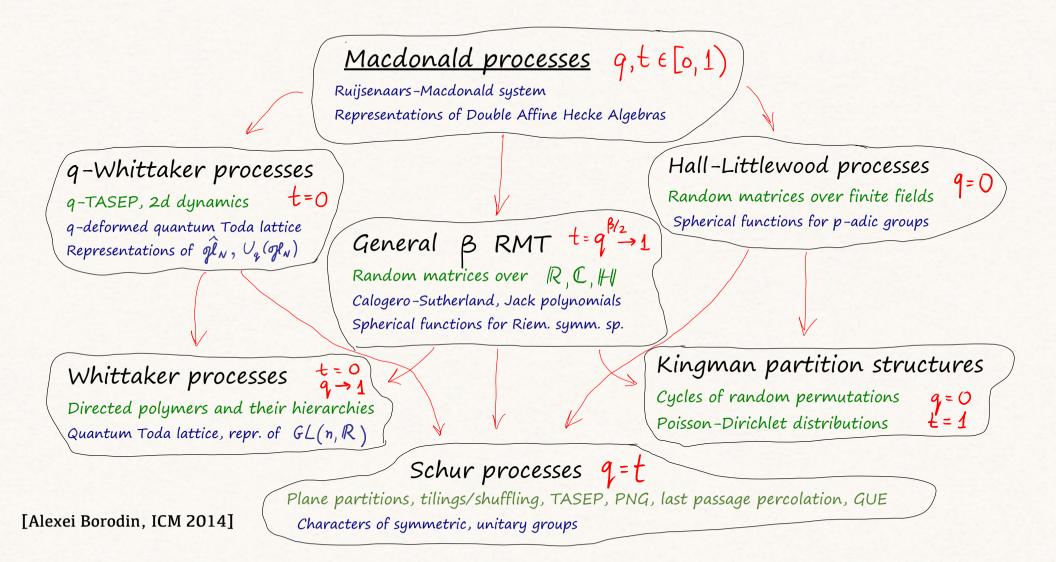
Cokernels of block-triangular matrices [Mészáros 2024]

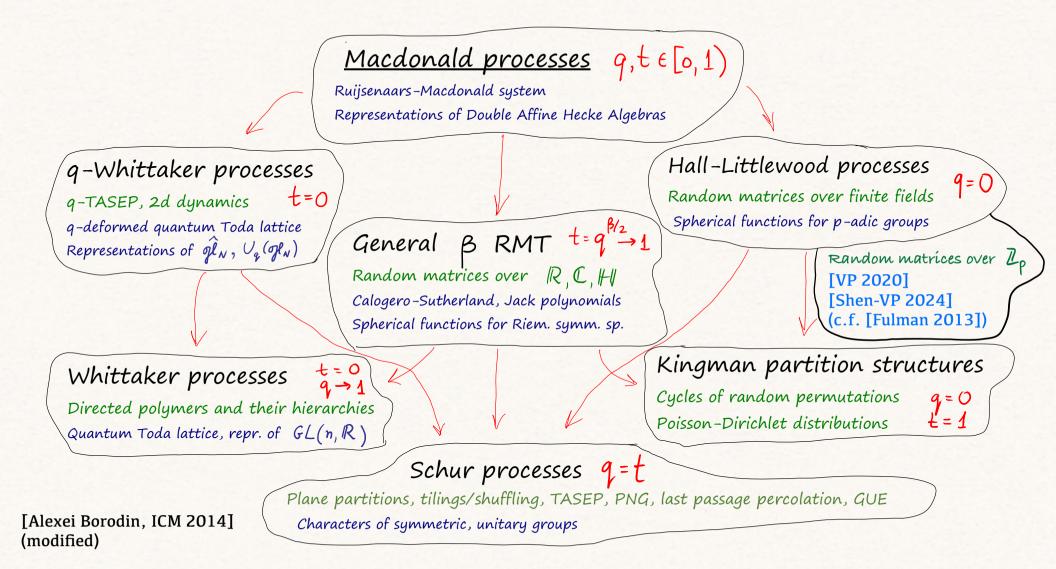
A. A. Kíríllov, 1990s: How does Jordan type of uniformly random uppertriangular matrix look?



$$\lambda_{i}(N) \sim C_{i} \cdot N + \sigma_{i} \cdot N \neq i$$
[Borodin 1995]
$$\frac{dependent}{Gaussians}$$

$$\lambda_{i}(200) = (108, 45, 23, 12, 7, 3, 1, 1) \quad \text{from 200 x 200 matrix over } \mathbb{F}_{2}$$





MOMENT METHOD

Real random variable X has moments E[X] = 1, 2, ...

Random group & has moments E[#Sar(G->H)]

